This site is not maintained. Click here for the new website of Richard Dawkins.

First four-exoplanet system imaged

alt text

Among one of the first exoplanet systems imaged was HR 8799. In 2008, a team led by Christian Marois at the Herzberg Institute of Astrophysics in Canada, took a picture of the system directly imaging three giant planets. The team revisited the system in 2009 – 2010 with the Keck II telescope and discovered a fourth planet in the system.

The new planet, designated HR 8799e, orbits at a distance of 14.5 AU, making it the innermost planet in the system. The other planets all orbit at distances of >25 AU. The images were taken in the near infrared where they are most noticeable because the system is relatively young (<100 Myr) and the planets are still radiating large amounts of heat from their formation.

The youth of these planets is part of what makes them an interesting target for astronomers. There exists a controversy in the community of planetary astronomers on the formation method of large planets. One theory states that planets form from a single, monolithic collapse that creates the entire planet’s mass at one time. Another possibility is that the initial collapse forms small cores early on, but then there is substantial growth later, as the planetesimal sweeps up additional material.

The discovery of the new planet challenges both theories. Marois states, “none of [the theories] can explain the in situ formation of all four planets.” Thus, a combination of both methods may be in use in the system. Several belts of dust are also known in the system which may help astronomers determine what modes of formation were present.

In particular HR 8799e is challenging to an in situ formation because the gravitational perturbations from the parent star should disrupt the formation of large gas planets within 20-40 AU from a single formation. Instead, the new planet would likely have had to been a core collapse with subsequent accretion, or alternatively, moved to its present location via migration.

Studying systems such as this may help astronomers better understand the formation of our own solar system. The paper notes that the HR 8799 “does show interesting similarities with the Solar system with all giant planets located past the system’s estimated snow line (~2.7 AU for the Solar system and ~6 AU for HR 8799)”. Additionally, both have debris disks beyond the outer orbits with similar temperatures.

Read on

TAGGED: SPACE


RELATED CONTENT

Nasa's Curiosity rover zaps Mars rock

Jonathan Amos - BBC News Comments

Pew pew pew pew

Sun Is Roundest Natural Object Known

Dave Mosher - National Geographic Comments

The sun is the roundest natural object ever precisely measured, astronomers say.

Astrophysicists simulate 14 billion...

Liat Clark - Wired.co.uk Comments

Astrophysicists simulate 14 billion years of cosmic evolution in high resolution

Mars rover searching for signs of life

Lawrence Krauss - CNN Comments

Author and theoretical physicist Lawrence Krauss, discusses what it would be like if we found life on another planet.

'Plate Tectonics' Discovered on...

- - The Daily Galaxy Comments

Mars Science Laboratory Touches Down...

Sean Carroll - Cosmic Variance -... Comments

Launched on November 26, 2011, the mission is scheduled to land on Mars’s Gale Crater tonight/tomorrow morning: 5:31 UTC, which translates to 1:30 a.m. Eastern time or 10:20 p.m. Pacific.

MORE

MORE BY JON VOISEY

MORE

Comments

Comment RSS Feed

Please sign in or register to comment