This site is not maintained. Click here for the new website of Richard Dawkins.

LHC results put supersymmetry theory 'on the spot'

Results from the Large Hadron Collider (LHC) have all but killed the simplest version of an enticing theory of sub-atomic physics.

Researchers failed to find evidence of so-called "supersymmetric" particles, which many physicists had hoped would plug holes in the current theory.

Theorists working in the field have told BBC News that they may have to come up with a completely new idea.

Data were presented at the Lepton Photon science meeting in Mumbai.

They come from the LHC Beauty (LHCb) experiment, one of the four main detectors situated around the collider ring at the European Organisation for Nuclear Research (Cern) on the Swiss-French border.

According to Dr Tara Shears of Liverpool University, a spokesman for the LHCb experiment: "It does rather put supersymmetry on the spot".

The experiment looked at the decay of particles called "B-mesons" in hitherto unprecedented detail.

If supersymmetric particles exist, B-mesons ought to decay far more often than if they do not exist.

There also ought to be a greater difference in the way matter and antimatter versions of these particles decay.

The results had been eagerly awaited following hints from earlier results, most notably from the Tevatron particle accelerator in the US, that the decay of B-mesons was influenced by supersymmetric particles.

LHCb's more detailed analysis however has failed to find this effect.

alt text
Collisions inside the LHC should have found some evidence of Supersymmetry by now

Bitten the dust
This failure to find indirect evidence of supersymmetry, coupled with the fact that two of the collider's other main experiments have not yet detected supersymmetic particles, means that the simplest version of the theory has in effect bitten the dust.

The theory of supersymmetry in its simplest form is that as well as the subatomic particles we know about, there are "super-particles" that are similar, but have slightly different characteristics.

The theory, which was developed 20 years ago, can help to explain why there is more material in the Universe than we can detect - so-called "dark matter".

According to Professor Jordan Nash of Imperial College London, who is working on one of the LHC's experiments, researchers could have seen some evidence of supersymmetry by now.

"The fact that we haven't seen any evidence of it tells us that either our understanding of it is incomplete, or it's a little different to what we thought - or maybe it doesn't exist at all," he said.

Disappointed
The timing of the announcement could not be worse for advocates of supersymmetry, who begin their annual international meeting at Fermilab, near Chicago, this weekend.

Dr Joseph Lykken of Fermilab, who is among the conference organisers, says he and others working in the field are "disappointed" by the results - or rather, the lack of them.

"There's a certain amount of worry that's creeping into our discussions," he told BBC News.

The worry is that the basic idea of supersymmetry might be wrong.

"It's a beautiful idea. It explains dark matter, it explains the Higgs boson, it explains some aspects of cosmology; but that doesn't mean it's right.

"It could be that this whole framework has some fundamental flaws and we have to start over again and figure out a new direction," he said.

Read on

TAGGED: PHYSICS, SCIENCE


RELATED CONTENT

Why Some Physicists Bet Against the...

Robert Wright - The Atlantic Comments

Hawking wasn't available to answer that question, but I did manage to have a long conversation with an American physicist who had also doubted the existence of the Higgs--Lawrence Krauss

A Blip That Speaks of Our Place in the...

Lawrence M. Krauss - New York Times Comments

A Blip That Speaks of Our Place in the Universe

How the Higgs Boson Posits a New Story...

Lawrence M. Krauss - The Daily Beast Comments

How the Higgs Boson Posits a New Story of our Creation

An idea thought up on a rainy weekend

Johnathan Brown - The Independent Comments

As an atheist with no desire to upset believers, Professor Peter Higgs has always hated the idea of a God particle. He has never been keen on the nomenclature of the Higgs boson either – referring to it as "the particle named after me" on the rare occasions he gives an interview.

"It's a boson:" Higgs quest bears new...

Chris Wickham - Reuters 0 Comments

(Reuters) - Scientists at Europe's CERN research centre have found a new subatomic particle, a basic building block of the universe, which appears to be the boson imagined and named half a century ago by theoretical physicist Peter Higgs.

A Quantum Leap

Lawrence Krauss - Slate Comments

MORE

Comments

Comment RSS Feed

Please sign in or register to comment