This site is not maintained. Click here for the new website of Richard Dawkins.

Synthetic XNA molecules can evolve and store genetic information, just like DNA

Out of all the possible molecules in the world, just two form the basis of life’s grand variety: DNA and RNA. They alone can store and pass on genetic information. Within their repetitive twists, these polymers encode the stuff of every whale, ant, flower, tree and bacterium.

But even though DNA and RNA play these roles exclusively, they’re not the only molecules that can. Vitor Pinheiro from the MRC Laboratory of Molecular Biology has developed six alternative polymers called XNAs that can also store genetic information and evolve through natural selection. None of them are found in nature. They are part of a dawning era of “synthetic genetics”, which expands the chemistry of life in new uncharted directions.


DNA looks like a twisting ladder. Its sides are chains of a sugar called deoxyribose (the D in DNA), connected by phosphate groups. Each sugar is attached to one of four ‘bases’ – these form the rungs of the ladder, and are signified by the letters A, C, G and T.

RNA is similar, with three important exceptions. It’s typically only half a ladder – a single helix, rather than DNA’s famous double. Its ‘T’ rung is a ‘U’. And its sugar is ribose rather than deoxyribose (hence, the R in RNA).

Both of these molecules are called nucleic acids. So are Pinheiro’s XNAs, but they make their ladders using different sugars. If arabinose stands in for deoxyribose, you get ANA instead of DNA. If cyclohexane plays the part, you get CeNA. If the role goes to threose, you get TNA, and so on. These differences aside, all the XNAs use the same bases and the same phosphate groups. Any of them could pair up with a complementary strand of DNA or RNA.

“They are very interesting with respect to the origin of life,” says Jack Szostak, a Harvard biologist who studies life’s beginnings and was not involved in the study. “In principle, many different polymers could serve the roles of RNA and DNA in living organisms. Why then does modern biology use only RNA and DNA?”

Most biologists now think that RNA preceded DNA as life’s chief information molecule. Phil Holliger, who led the new study, says that the “inescapable conclusion” is that its dominance was the result of a “frozen accident at the origin of life”. RNA may have gained supremacy because of random factors rather than some inherent quality, just as VHS and Blu-Rays eventually won out over Betmax and HD-DVDs.

The alternative is that some nucleic acids may be better at copying themselves, or speeding up other chemical reactions. “Phil’s work will certainly make it possible to compare the functional abilities of a wide range of synthetic nucleic acids,” says Szostak.

Read more

TAGGED: BIOLOGY, EVOLUTION


RELATED CONTENT

Planet of the apes

Stephen Cave - Financial Times Comments

What we really know about our evolutionary past – and what we don’t

WALK DARWIN’S TREE OF LIFE ~ 25 - 26...

- - Ancestors Trail Walk Comments

WALK DARWIN’S TREE OF LIFE ~ 26 AUGUST 2012 - event begins on Saturday 25 August

Astrophysicists simulate 14 billion...

Liat Clark - Wired.co.uk Comments

Astrophysicists simulate 14 billion years of cosmic evolution in high resolution

Study casts doubt on human-Neanderthal...

Alok Jha - The Guardian Comments

Cambridge scientists claim DNA overlap between Neanderthals and modern humans is a remnant of a common ancestor

Why do organisms build tissues they...

- - Science Blog Comments

Why, after millions of years of evolution, do organisms build structures that seemingly serve no purpose?

New flat-faced human species possibly...

Charles Choi - CBS News Comments

Four decades ago, in 1972, the Koobi Fora Research Project discovered the enigmatic fossilized skull known as KNM-ER 1470 which ignited a now long-standing debate about how many different species of early Homos existed.

MORE

MORE BY ED YONG

Prisoners pitch in to save endangered...

Ed Yong - Nature News Comments

Under the supervision of guards and graduate students, a small group of prisoners is breeding the beautiful orange-and-white insects in a greenhouse outside the prison. They have even carried out research to show what plants the butterfly prefers to lay its eggs on.

Bacteria transform the closest living...

Ed Yong - Discover Magazine Blogs Comments

Did bacteria also help the single-celled ancestors of animals to band together? Did they contribute to the evolutionary foundation of every ant and elephant, every fish and finch?

Artificial jellyfish built from rat...

Ed Yong - nature Comments

A jellyfish made of silicone and rat heart cells 'swims' in water when subjected to an electric field. HARVARD UNIV./CALTECH

Will we ever clone a mammoth?

Ed Yong - Discover Magazine 17 Comments

Scientists have used mammoth remains to discover much about how the mammoth lived and died, and even to sequence most of its genome. But can they also bring the animal back from the dead?

Live Slow, Die Old

Ed Yong - TheScientist 12 Comments

Live Slow, Die Old
Ancient bacteria living in deep-sea sediments are alive—but with metabolisms so slow that it’s hard to tell.

Brain Controls Paralyzed Muscles

Ed Yong - TheScientist 11 Comments

A new system decodes brain signals from the motor cortex of monkeys and translates them into basic arm movements, despite temporary paralysis.

MORE

Comments

Comment RSS Feed

Please sign in or register to comment