This site is not maintained. Click here for the new website of Richard Dawkins.

Live Slow, Die Old

Ancient bacteria living in deep-sea sediments are alive—but with metabolisms so slow that it’s hard to tell.

In the northern Pacific Ocean, buried 20 meters below the ocean floor, are bacteria that live life in the extreme slow lane. They have not received any fresh sources of food since they were buried 86 million years ago, when dinosaurs still walked the land. Still, they cling to life by using up the little oxygen available to them at an incredibly slow rate.

“Their activity is so slow that on our timescale, nothing happens at all,” said Hans Røy from Aarhus University, who discovered the microbes. “It’s much less than any laboratory culture we have.”

“Besides being interesting on its own, it has large implication for the potential of life in other low energy environments such as the subsurface of Mars,” added Arthur Spivack from the University of Rhode Island, who was not involved in the study.

The study, published today (May 17) in Science, is part of Røy’s ongoing effort to understand the organisms that live in marine sediments, which could account for 90 percent of all microbes in the world. “We’re looking at the most common forms of life on this planet, and we know almost nothing about them,” said Røy.

Extremely slow-going bacteria were discovered in the surface of the ocean floor in the 1990s, but many scientists initially dismissed them as dead. A Japanese group challenged that idea last year, when they showed that cells buried in sediments from the Sea of Japan could grow if they were given a fresh source of nutrients. Now, Røy has gone one step further by measuring the metabolism of subsurface bacteria in their native soil, and confirming that they are alive, if barely so.

. . .
To put that into perspective, if you put sediment from the North Sea into a sealed container, the microbes inside would use up all the oxygen in a few minutes. “If we did the same thing with our sediments, it would be 1,000 years before we could even measure a change,” said Røy.
. . .
Read more



Bonobo makes stone tools like early...

Hannah Krakauer - New Scientist Comments

Kanzi the bonobo is able to create and use stone tools

Scientists Discover Previously Unknown...

- - URMC Comments

Newer Imaging Technique Brings ‘Glymphatic System’ to Light

Grey parrots use reasoning where...

- - The Royal Society Comments

Research suggesting that grey parrots can reason about cause and effect from audio cues alone- a skill that monkeys and dogs lack- is presented in Proceedings of the Royal Society B today.

Why do organisms build tissues they...

- - Science Blog Comments

Why, after millions of years of evolution, do organisms build structures that seemingly serve no purpose?

New flat-faced human species possibly...

Charles Choi - CBS News Comments

Four decades ago, in 1972, the Koobi Fora Research Project discovered the enigmatic fossilized skull known as KNM-ER 1470 which ignited a now long-standing debate about how many different species of early Homos existed.

A New Species Discovered ... On Flickr

Adam Cole - NPR Comments

One day in May of 2011, Shaun Winterton was looking at pictures of bugs on the Internet when something unusual caught his eye. It was a close shot of a green lacewing — an insect he knew well — but on its wing was an unfamiliar network of black lines and a few flecks of blue.



Prisoners pitch in to save endangered...

Ed Yong - Nature News Comments

Under the supervision of guards and graduate students, a small group of prisoners is breeding the beautiful orange-and-white insects in a greenhouse outside the prison. They have even carried out research to show what plants the butterfly prefers to lay its eggs on.

Bacteria transform the closest living...

Ed Yong - Discover Magazine Blogs Comments

Did bacteria also help the single-celled ancestors of animals to band together? Did they contribute to the evolutionary foundation of every ant and elephant, every fish and finch?

Artificial jellyfish built from rat...

Ed Yong - nature Comments

A jellyfish made of silicone and rat heart cells 'swims' in water when subjected to an electric field. HARVARD UNIV./CALTECH

Will we ever clone a mammoth?

Ed Yong - Discover Magazine 17 Comments

Scientists have used mammoth remains to discover much about how the mammoth lived and died, and even to sequence most of its genome. But can they also bring the animal back from the dead?

Brain Controls Paralyzed Muscles

Ed Yong - TheScientist 11 Comments

A new system decodes brain signals from the motor cortex of monkeys and translates them into basic arm movements, despite temporary paralysis.

Synthetic XNA molecules can evolve and...

Ed Yong - Discover Magazine Blogs 47 Comments

Six polymers called XNAs that can store genetic information and evolve through natural selection. None of them are found in nature.



Comment RSS Feed

Please sign in or register to comment